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. order t? find an upper theoretical limit for the efficiency of p-n junction solar energy converters, a 
limiting effiCiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which 
the cmly recombin.ation of hole-electron pairs is radiative as required by the principle of detailed 
b.alance. The effiCiency IS calculated for the case in which radiative recombination is only a fixed frac-
tion f. of the total recombmation, the rest being nonradiative. Efficiencies at the matched loads have been 
calculated with band gap and f. as parameters, the sun and cell being assumed to be blackbodies with tem-
peratures of 6OO0 oK and 30(tK, The efficiency is found to be 30% for an energy gap 
of 1.1. ev and fc= 1: Actual JunctIOns do not obey the predicted current-voltage relationship, and reasons for 
the difference and Its relevance to efficiency are discussed. 

1. INTRODUCTION 

M ANY papers have been written about the effi-
ciency of solar cells employing p-n junctions in 

semiconductors, the great potential of the silicon solar 
cell having been emphasized by Chapin, Fuller and 
Pearson! in 1954. Also in 1954, Pfann and van Roos-
broeck2 gave a more detailed treatment including ana-
lytic expressions optimizing or matching the load. A 
further treatment was given by Prince3 in 1955 in 
which the efficiency was calculated as a function of'the 
energy gap. Loferski4 has attempted to predict the de-
pendence of efficiency upon energy gap in more detail. 
Review papers have recently appeared in two journals 
in this country.5,6 

The treatments of efficiency presented in these papers 
are based on empirical values for the constants de-

the. of the solar eelU They are 
In general In fairly good agreement with observed 

and predict certain limits. These predic-
tIOns have become generally accepted as theoretical 
limits (see, for example, the review articles by Rappa-
portS and Wolf6). 

It is the view of the present authors that the ac-
of this previously predicted limiting curve 

.::J.f vs energy gap is not theoretically justified 
SInce It IS based on certain empirical values of lifetime 
etc. We shall refer to it as the semiempiricallimit. ' 
. h.owever, a theoretically justifiable upper 

lImIt. ThIS lImIt IS a consequence of the nature of atomic 
p.rocesses by the basic laws of physics, par-

the prInClple of detailed balance. In this paper 
thiS lImit, called the detailed balance limit, is calculated 
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and compared with the semi empirical limit in Fig. 1. 
Actually the two limits are not extremely different, the 
detailed balance limit being at most higher by about 
50% in the range of energy gaps of chief interest. Thus, 
to some degree, this article is concerned with a matter 
of principle rather than practical values. The difference 
is much more signIficant, however, insofar as estimating 
potential for improvement is concerned. In fact, the 
detailed balance limit may lie more than twice as far 
above the achieved values as does the semiempirical 
limit, thus suggesting much greater possible improve-
ment (see Fig. 1). 

The situation at present may be understood by 
analogy with a steam power plant. If the second law of 
thermodynamics were unknown, there might still exist 
quite good calculations of the efficiency of any given 
configuration based on heats of combustion, etc. How-
ever, a serious gap would still exist since it would be 

to say how much the efficiency might be 
Improved by reduction of bearing friction, improving 
heat exchangers, etc. The second law of thermody-
namics provides an upper limit in terms of more funda-
mental quantities such as the temperature of the ex-
othermic reaction and the temperature of the heat sink. 
The merit of a given power plant can then be appraised 
in terms of the limit set by the second law. 

A similar situation exists for the solar cell, the missing 
theoretical efficiency being, of course, in no way com-
parable in importance to the second law of thermo-
dynamics. Factors such as series resistance and reflec-
tion losses correspond to friction in a power plant. There 
are even two temperatures, that of the sun T. and that 
of the solar cell Te. The efficiency of a solar converter 
can in principle be brought to the thermodynamic 
limit (T.-Tc)jTc by using reflectors, etc. 8 However, a 
planar solar cell, without concentrators of radiation 
cannot approach this limit. The limit it can approach 
depends on its energy gap and certain geometrical 
factors such as the angle sub tended by the sun and the 

8 H. A. Miiser, Z. Physik 148, 380 (1957), and A. L. Rose (see 
footnote 7) have used the second law of thermodynamics in their 
treatments of photovoltage. 
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The maximum power conversion efficiency of a solar cell consisting of single 
semiconducting absorber material with band-gap energy Eg is described by the Shockley–
Queisser 

(i) the probability for the absorption of solar light by the generation of a single electron–hole pair in 
the photovoltaic absorber material is unity for all photon energies E >= Eg and zero for E < Eg.  

ii) All photogenerated charge carriers thermalize to the band edges.  

iii) The collection probability for all photo- generated electron–hole pairs at short-circuit is unity. 

iv) The only loss mechanism in excess of the non absorbed photons of (i) and the thermalization 
losses is the spontaneous emission of photons by radiative recombination of electron–hole pairs as 
required by the principle of detailed balance.  



The Shockley–Queisser Theory 

spontaneous emission of photons by radiative recombination of electron–hole pairs
as required by the principle of detailed balance.

Inorder tocalculate themaximumavailableshort-circuit current Jsc,SQasdefinedby
(iii), we need the incoming photon flux winc and the absorptance A(E) defining
the percentage of the incoming light at a certain photon energy E that is absorbed
and not reflected or transmitted. The simplest approximation defined for an ideal
absorber by condition (i) is a step-function, that is, A(E)¼ 1 (for E>Eg) and A(E)¼ 0
(forE<Eg).Thenwehaveunder short-circuit conditions (i.e., applied voltageV¼ 0V)

Jsc;SQ ¼ q
ð1

0

AðEÞwincðEÞdE ¼ q
ð1

Eg

wincðEÞdE ð1:1Þ

where q denotes the elementary charge.
Figure1.1a compares the spectral photonflux corresponding to the terrestrialAM1.5G

normspectrumwith theblackbody spectrumatT¼ 5800K,bothspectranormalized to a
powerdensity of 100mW/cm2. Figure 1.1b illustrates themaximumshort-circuit current
density that is possible for a given band-gap energy Eg according to Eq. (1.2).

Since light absorption by generation of free carriers and light emission by
recombination of electron–hole pairs is interconnected by the principle of detailed
balance, in thermodynamic equilibrium the emissivity wem is connected to the
absorptance via Kirchhoff �s law wem ¼ AðEÞwbbðE;TÞ, where wbbðE;TÞ is the black
body spectrum at temperature T.

In a ideal solar cell under applied voltage bias, we useW€urfel�s generalization [2] of
Kirchhoff �s law to describe the recombination current Jrec,SQ for radiative recom-
bination according to

Figure 1.1 (a) Comparison of the
AM1.5G spectrum with the black body
spectrum of a body with a temperature
T¼ 5800K. Both spectra are normalized such
that the power density is 100mW/cm2. (b)Using

the AM1.5G spectrum and Eq. (2.1), we obtain
the short-circuit current density Jsc,SQ in the
Shockley–Queisser limit as a function of the
band-gap energy Eg of the solar absorber.
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Jrec;SQ ¼ q
ð1

0

AðEÞwbbðE;TÞexp
qV
kT

" #
dE ¼ q

ð1

Eg

wbbðE;TÞexp
qV
kT

" #
dE ð1:2Þ

where the second equality again results from the assumption of a sharp band-gap
energyEg. Thus, Eq. (1.2) describes the current density of a solar cell in the dark if only
radiative recombination of carriers is considered corresponding to condition (iv) and
the carriers have the temperature T of the solar cell according to condition (ii). The
total current density J under illumination is a superposition of this radiative
recombination current density and the short-circuit current density defined in
Eq. (1.1). Thus, we can write

JðVÞ ¼ Jrec;SQðVÞ$Jsc;SQ ¼ q
ð1

Eg

wbbðEÞdE exp
qV
kT

" #
$q

ð1

Eg

wincðEÞdE ð1:3Þ

There are two contributions to the incoming photon fluxwinc, that is, the spectrum
wsun of the sun and the photon flux wbb from the environment, which has the same
temperature as the sample. When we replace the incoming photon flux winc with the
sum wsun þ wbb, Eq. (1.3) simplifies to

JðVÞ ¼ q
ð1

Eg

wbbðEÞdE exp
qV
kT

" #
$1

$ %
$q

ð1

Eg

wsunðEÞdE ð1:4Þ

which is a typical diode equationwith an additional photocurrent only due to the extra
illumination from the sun. Now it is obvious that for zero excess illumination and
zero volts applied, the current becomes zero.

Figure 1.2 shows the current density/voltage ( J/V) curves of an ideal solar cell
according to Eq. (1.4) for three different band-gap energiesEg¼ 0.8, 1.4, and 2.0 eV. If
we evaluate Eq. (1.4) under open-circuit conditions, that is, at J¼ 0, we find
the maximum possible voltage in the fourth quadrant of the coordinate system
in Figure 1.2. This voltage is called the open-circuit voltageVoc and follows from
Eq. (1.4) as

Voc ¼
kT
q
ln

Ð1

Eg

wsunðEÞdE

Ð1

Eg

wbbðEÞdE
þ 1

0

BBB@

1

CCCA ¼ kT
q
ln

Jsc;SQ
J0;SQ

þ 1
" #

ð1:5Þ

Here, J0,SQ is the saturation current density in the SQ limit, that is, the smallest
possible saturation current density for a semiconductor of a given band gap. The
open-circuit voltage increases nearly linearly with increasing band gap as shown in
Figure 1.3a.
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A(E) = 1 (for E > Eg) and A(E) = 0 (for E < Eg) 

(1) 

(2) 
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There are two contributions to the incoming photon φinc, that is, the spectrum φsun of the 
sun and the photon φbb from the environment, which has the same temperature as the 
sample. When we replace the incoming photon φinc with the sum φsun + φbb ,  

typical diode equation with an additional photocurrent only due to the extra 
illumination from the sun. 
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2.2
Current/Voltage Curves

2.2.1
Shape of Current/Voltage Curves and their Description with Equivalent Circuit
Models

In Chapter 1, the concept of the illuminated J/V curve and its basic features have
already been discussed. We started our discussion on J/V curves with the ideal solar
cell in the Shockley–Queisser limit [1]. In this case, the thermodynamic argumen-
tation gave a J/V curve of the form

J ¼ J0 exp
qV
kT

! "
"1

# $
"Jsc ð2:1Þ

where kT/q is the thermal voltage. A J/V curve of such a shape – however with
different values for the saturation current density J0 and the short-circuit current
density Jsc – follows also from a device simulation of a p–n- or p–i–n-junction solar
cell as described in Chapter 19 as long as the recombination rate R is proportional to
the product of electron and hole concentration (R / np) and as long as the carrier
mobilities are sufficiently high to extract all charge carriers under all voltages under
consideration. In this case, the recombination current density Jrec, which is equal per
definition to the dark current density Jd, is simply

Jrec ¼ Jd ¼ q
ðd

0

Rdx ¼ q
ðd

0

Bðnp"n2i Þdx ¼ qBd
#
exp

!
qV
kT

"
"1

$

¼ J0

#
exp

!
qV
kT

"
"1

$ ð2:2Þ

The requirement of sufficiently highmobilitiesmeans also that it is reasonable to
assume np ¼ n2i exp½qV=ðkTÞ& throughout the whole device thickness d, where ni is
the intrinsic carrier concentration. In the following, this will be illustrated by
numerical simulations. Figure 2.1a and b shows the simulated dark and illumi-
nated J/V curve of such an idealized device in the case when only radiative
recombination is considered. The simulated device has a thick (2.5 mm) p-type
layer and a thin (200 nm) n-type layer as is typical for most p–n-junction solar cells.
The dark current density Jd is a simple exponential function with a slope of q/kTas
rationalized from Eq. (2.2) and the illuminated current density Jil is shifted by the
value Jsc into the fourth quadrant of the coordinate system. Thus, the difference
Jph¼ Jil" Jd between illuminated and dark J/V curve, the photocurrent, equals
always the short-circuit current density Jsc.

Although a simple description of the J/V curve as in Eq. (2.1) represents the main
characteristics of most solar-cell J/V curves, the reality looks slightly different in
several respects. The first typical feature of any p–n-junction solar cell is shown in
Figure 2.1c and d. Typically, the dominant recombinationmechanism is not radiative
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Open circuit conditions, J=0 
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Eg
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" #
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possible saturation current density for a semiconductor of a given band gap. The
open-circuit voltage increases nearly linearly with increasing band gap as shown in
Figure 1.3a.
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Figure 1.2 (a) Power density/voltage curves
and (b) current density/voltage ( J/V) curves of
three ideal solar cells with band gaps Eg¼ 0.8,
1.4, and 2.0 eV, respectively. The
higher the band gap Eg, the higher the
open-circuit voltageVoc, that is, the

intercept of both power density and
current density with the voltage axis. However,
a higher band gap also leads to a
decreased short-circuit current Jsc (cf.
Figure 1.1b). The curves are calculated
using Eq. (1.4).
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Figure 1.3 (a) Open-circuit voltage and (b)
conversion efficiency as a function of the
band-gap energy Eg in the Shockley–Queisser
limit using an AM1.5G spectrum as
illumination. The optimum band-gap

energies for single junction solar cells are
in the range of 1.1 eV< Eg< 1.4 eV with
maximum conversion efficiencies
around g¼ 33% under unconcentrated
sunlight.
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The final result of the SQ theory: the efficiency as a function of the 
band-gap energy for illumination with the AM1.5G spectrum. 



2.2
Current/Voltage Curves

2.2.1
Shape of Current/Voltage Curves and their Description with Equivalent Circuit
Models

In Chapter 1, the concept of the illuminated J/V curve and its basic features have
already been discussed. We started our discussion on J/V curves with the ideal solar
cell in the Shockley–Queisser limit [1]. In this case, the thermodynamic argumen-
tation gave a J/V curve of the form

J ¼ J0 exp
qV
kT

! "
"1

# $
"Jsc ð2:1Þ

where kT/q is the thermal voltage. A J/V curve of such a shape – however with
different values for the saturation current density J0 and the short-circuit current
density Jsc – follows also from a device simulation of a p–n- or p–i–n-junction solar
cell as described in Chapter 19 as long as the recombination rate R is proportional to
the product of electron and hole concentration (R / np) and as long as the carrier
mobilities are sufficiently high to extract all charge carriers under all voltages under
consideration. In this case, the recombination current density Jrec, which is equal per
definition to the dark current density Jd, is simply

Jrec ¼ Jd ¼ q
ðd

0

Rdx ¼ q
ðd

0

Bðnp"n2i Þdx ¼ qBd
#
exp

!
qV
kT

"
"1

$

¼ J0

#
exp

!
qV
kT

"
"1

$ ð2:2Þ

The requirement of sufficiently highmobilitiesmeans also that it is reasonable to
assume np ¼ n2i exp½qV=ðkTÞ& throughout the whole device thickness d, where ni is
the intrinsic carrier concentration. In the following, this will be illustrated by
numerical simulations. Figure 2.1a and b shows the simulated dark and illumi-
nated J/V curve of such an idealized device in the case when only radiative
recombination is considered. The simulated device has a thick (2.5 mm) p-type
layer and a thin (200 nm) n-type layer as is typical for most p–n-junction solar cells.
The dark current density Jd is a simple exponential function with a slope of q/kTas
rationalized from Eq. (2.2) and the illuminated current density Jil is shifted by the
value Jsc into the fourth quadrant of the coordinate system. Thus, the difference
Jph¼ Jil" Jd between illuminated and dark J/V curve, the photocurrent, equals
always the short-circuit current density Jsc.

Although a simple description of the J/V curve as in Eq. (2.1) represents the main
characteristics of most solar-cell J/V curves, the reality looks slightly different in
several respects. The first typical feature of any p–n-junction solar cell is shown in
Figure 2.1c and d. Typically, the dominant recombinationmechanism is not radiative

36j 2 Fundamental Electrical Characterization of Thin-Film Solar Cells

Shape of Current/Voltage Curves and their 
Description with Equivalent Circuit Models 

2.2
Current/Voltage Curves

2.2.1
Shape of Current/Voltage Curves and their Description with Equivalent Circuit
Models

In Chapter 1, the concept of the illuminated J/V curve and its basic features have
already been discussed. We started our discussion on J/V curves with the ideal solar
cell in the Shockley–Queisser limit [1]. In this case, the thermodynamic argumen-
tation gave a J/V curve of the form

J ¼ J0 exp
qV
kT

! "
"1

# $
"Jsc ð2:1Þ

where kT/q is the thermal voltage. A J/V curve of such a shape – however with
different values for the saturation current density J0 and the short-circuit current
density Jsc – follows also from a device simulation of a p–n- or p–i–n-junction solar
cell as described in Chapter 19 as long as the recombination rate R is proportional to
the product of electron and hole concentration (R / np) and as long as the carrier
mobilities are sufficiently high to extract all charge carriers under all voltages under
consideration. In this case, the recombination current density Jrec, which is equal per
definition to the dark current density Jd, is simply

Jrec ¼ Jd ¼ q
ðd

0

Rdx ¼ q
ðd

0

Bðnp"n2i Þdx ¼ qBd
#
exp

!
qV
kT

"
"1

$

¼ J0

#
exp

!
qV
kT

"
"1

$ ð2:2Þ

The requirement of sufficiently highmobilitiesmeans also that it is reasonable to
assume np ¼ n2i exp½qV=ðkTÞ& throughout the whole device thickness d, where ni is
the intrinsic carrier concentration. In the following, this will be illustrated by
numerical simulations. Figure 2.1a and b shows the simulated dark and illumi-
nated J/V curve of such an idealized device in the case when only radiative
recombination is considered. The simulated device has a thick (2.5 mm) p-type
layer and a thin (200 nm) n-type layer as is typical for most p–n-junction solar cells.
The dark current density Jd is a simple exponential function with a slope of q/kTas
rationalized from Eq. (2.2) and the illuminated current density Jil is shifted by the
value Jsc into the fourth quadrant of the coordinate system. Thus, the difference
Jph¼ Jil" Jd between illuminated and dark J/V curve, the photocurrent, equals
always the short-circuit current density Jsc.

Although a simple description of the J/V curve as in Eq. (2.1) represents the main
characteristics of most solar-cell J/V curves, the reality looks slightly different in
several respects. The first typical feature of any p–n-junction solar cell is shown in
Figure 2.1c and d. Typically, the dominant recombinationmechanism is not radiative

36j 2 Fundamental Electrical Characterization of Thin-Film Solar Cells

2.2
Current/Voltage Curves

2.2.1
Shape of Current/Voltage Curves and their Description with Equivalent Circuit
Models

In Chapter 1, the concept of the illuminated J/V curve and its basic features have
already been discussed. We started our discussion on J/V curves with the ideal solar
cell in the Shockley–Queisser limit [1]. In this case, the thermodynamic argumen-
tation gave a J/V curve of the form

J ¼ J0 exp
qV
kT

! "
"1

# $
"Jsc ð2:1Þ

where kT/q is the thermal voltage. A J/V curve of such a shape – however with
different values for the saturation current density J0 and the short-circuit current
density Jsc – follows also from a device simulation of a p–n- or p–i–n-junction solar
cell as described in Chapter 19 as long as the recombination rate R is proportional to
the product of electron and hole concentration (R / np) and as long as the carrier
mobilities are sufficiently high to extract all charge carriers under all voltages under
consideration. In this case, the recombination current density Jrec, which is equal per
definition to the dark current density Jd, is simply

Jrec ¼ Jd ¼ q
ðd

0

Rdx ¼ q
ðd

0

Bðnp"n2i Þdx ¼ qBd
#
exp

!
qV
kT

"
"1

$

¼ J0

#
exp

!
qV
kT

"
"1

$ ð2:2Þ

The requirement of sufficiently highmobilitiesmeans also that it is reasonable to
assume np ¼ n2i exp½qV=ðkTÞ& throughout the whole device thickness d, where ni is
the intrinsic carrier concentration. In the following, this will be illustrated by
numerical simulations. Figure 2.1a and b shows the simulated dark and illumi-
nated J/V curve of such an idealized device in the case when only radiative
recombination is considered. The simulated device has a thick (2.5 mm) p-type
layer and a thin (200 nm) n-type layer as is typical for most p–n-junction solar cells.
The dark current density Jd is a simple exponential function with a slope of q/kTas
rationalized from Eq. (2.2) and the illuminated current density Jil is shifted by the
value Jsc into the fourth quadrant of the coordinate system. Thus, the difference
Jph¼ Jil" Jd between illuminated and dark J/V curve, the photocurrent, equals
always the short-circuit current density Jsc.

Although a simple description of the J/V curve as in Eq. (2.1) represents the main
characteristics of most solar-cell J/V curves, the reality looks slightly different in
several respects. The first typical feature of any p–n-junction solar cell is shown in
Figure 2.1c and d. Typically, the dominant recombinationmechanism is not radiative

36j 2 Fundamental Electrical Characterization of Thin-Film Solar Cells

Jd dark current density 



different. This is due to the fact that for the example in Figure 2.1c the recombination
for voltages V> 0.5 V is dominated by recombination in the p-type layer of the p–n-
junction (which is assumed to be much thicker than the n-type layer). In the p-type
layer in the dark and for not too high voltages, the electron concentration is much
smaller than the hole concentration (n! p). Simplifying Eq. (2.3) yields

Rðn ! pÞ ¼ np%n2i
ðnþ pÞt

' n
t

ð2:6Þ

Since, the whole internal voltage V is now used to increase the minority carrier
concentration, it holds

Rðn ! pÞ ' n
t
/ exp

qV
kT

! "
ð2:7Þ

Obviously, the ideality factor is again unity, also for recombination via defects, as
long as the concentration of one type of carrier is much smaller than the concen-
tration of the other. With the same argument, also the recombination at surfaces of
p–n- or p–i–n-junctions will lead to ideality factors of 1, since at the contacts usually
n( p or p( n is fulfilled.

For p–n-junction solar cells, there are typically two voltage ranges with different
ideality factors as shown in Figure 2.1c. At lower voltages, the ideality factor is close
to but smaller than 2 (if multistep recombination or tunneling is absent), and
the recombination is dominated by the space-charge region. For higher voltages, the
ideality factor is close to 1 indicating defect recombination in the volume or the
surfaces of the absorber away from the space-charge region. For this reason,
determination of ideality factors in p–n-junction solar cells is usually done by fitting
two-diodemodels to experimental data. The two-diodemodel in the darkhas the form

J ¼ J01 exp
qV

nid1kT

! "
%1

# $
þ J02 exp

qV
nid2kT

! "
%1

# $
ð2:8Þ

where nid1 and nid2 are the two ideality factors and J01 and J02 the two corresponding
saturation current densities.

Up to now, we discussed the dependence of the recombination rate and the
recombination current on the internal voltage V, defined as the quasi-Fermi level
splitting in the space-charge region.We implicitly assumed that the voltagemeasured
is equal to this internal voltage. Now, we have to distinguish the externally measured
voltage Vext from the internal voltage Vi at the p–n-junction. The external voltage is
larger than the internal voltage by a termDV¼Vext%Vi that scales roughly in a linear
way with current density J. The proportionality factor between DV and J is the series
resistance Rs. The series resistance may originate from the finite conductivity of the
absorber layers themselves or from the front and back contacts. For V > 0.7 V in
Figure 2.1c, we already see that the simulated dark J/V curve (dashed line) has a
lower current density at a given voltage than the solid line indicating the two-diode
fit according to Eq. (2.8). For this simulation, this is due to the finite mobility and
thus finite conductivity of the p-type layer of the p–n-junction.

2.2 Current/Voltage Curves j39

different. This is due to the fact that for the example in Figure 2.1c the recombination
for voltages V> 0.5 V is dominated by recombination in the p-type layer of the p–n-
junction (which is assumed to be much thicker than the n-type layer). In the p-type
layer in the dark and for not too high voltages, the electron concentration is much
smaller than the hole concentration (n! p). Simplifying Eq. (2.3) yields

Rðn ! pÞ ¼ np%n2i
ðnþ pÞt

' n
t

ð2:6Þ

Since, the whole internal voltage V is now used to increase the minority carrier
concentration, it holds

Rðn ! pÞ ' n
t
/ exp

qV
kT

! "
ð2:7Þ

Obviously, the ideality factor is again unity, also for recombination via defects, as
long as the concentration of one type of carrier is much smaller than the concen-
tration of the other. With the same argument, also the recombination at surfaces of
p–n- or p–i–n-junctions will lead to ideality factors of 1, since at the contacts usually
n( p or p( n is fulfilled.

For p–n-junction solar cells, there are typically two voltage ranges with different
ideality factors as shown in Figure 2.1c. At lower voltages, the ideality factor is close
to but smaller than 2 (if multistep recombination or tunneling is absent), and
the recombination is dominated by the space-charge region. For higher voltages, the
ideality factor is close to 1 indicating defect recombination in the volume or the
surfaces of the absorber away from the space-charge region. For this reason,
determination of ideality factors in p–n-junction solar cells is usually done by fitting
two-diodemodels to experimental data. The two-diodemodel in the darkhas the form

J ¼ J01 exp
qV

nid1kT

! "
%1

# $
þ J02 exp

qV
nid2kT

! "
%1

# $
ð2:8Þ

where nid1 and nid2 are the two ideality factors and J01 and J02 the two corresponding
saturation current densities.

Up to now, we discussed the dependence of the recombination rate and the
recombination current on the internal voltage V, defined as the quasi-Fermi level
splitting in the space-charge region.We implicitly assumed that the voltagemeasured
is equal to this internal voltage. Now, we have to distinguish the externally measured
voltage Vext from the internal voltage Vi at the p–n-junction. The external voltage is
larger than the internal voltage by a termDV¼Vext%Vi that scales roughly in a linear
way with current density J. The proportionality factor between DV and J is the series
resistance Rs. The series resistance may originate from the finite conductivity of the
absorber layers themselves or from the front and back contacts. For V > 0.7 V in
Figure 2.1c, we already see that the simulated dark J/V curve (dashed line) has a
lower current density at a given voltage than the solid line indicating the two-diode
fit according to Eq. (2.8). For this simulation, this is due to the finite mobility and
thus finite conductivity of the p-type layer of the p–n-junction.

2.2 Current/Voltage Curves j39

Thus, themaximumof the recombination rateR in Eq. (2.3) is always foundwithin the
junction for n¼ p, leading to

Rðn ¼ pÞ ¼ np$n2i
ðnþ pÞt &

n
2t

¼
ffiffiffiffiffi
np

p

2t
ð2:4Þ

Assuming flat quasi-Fermi levels throughout the space-charge region, the product
np is proportional to exp(qV/kT ), where the internal voltageV is the quasi-Fermi level
splitting (divided by the elementary charge). Thus, the recombination rate scales via

Rðn ¼ pÞ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp
qV
kT

" #s
0¼ exp

qV
2kT

" #
ð2:5Þ

with the internal voltage V. Obviously, the slope of the recombination rate and
subsequently also the slope of the integral recombination rate, that is, the recom-
bination current, is now around q/2kT. We call this factor 2 in the denominator of the
exponent in Eq. (2.5) the ideality factor nid, sometimes also the diode quality factor.
When comparing this value with the according simulation in Figure 2.1c, we see that
the actual value of the ideality factor is slightly smaller, that is, nid¼ 1.86 at lower
voltages, which is due to the fact that n¼ p is only a limiting situation, which is exactly
valid only at one position in the space-charge region. The integration over the
recombination in the space-charge region then gives an ideality factor slightly smaller
than 2 with an exact value that depends on the details of thicknesses, doping
concentrations, and electrical parameters of the device.

While the above reasoning simply replaced the integral of the recombination rateR
through the space-charge region by the maximum of the integrand, more precise
analytical approximations are possible that take into account different lifetimes of
holes and electrons as well as the recombination through the entire space-charge
region [4]. This theoretical approach predicts diode ideality factors in a range
1' nid' 2 dependent on the energy of the recombination center and the respective
capture cross sections for electrons and holes. The explanation of nid> 2 is not
possible by considering recombination via a single recombination center. Amultiple
step recombination process via a series of trap states distributed in space and energy
would explain such large ideality factors for a recombination process situated in the
space-charge region [5]. Thismodel is especially suited to describe the dependence of
the ideality factor of CdS/CdTe heterojunction solar cells. Also the enhancement of
recombination by tunneling – a process that makes the recombination rate depen-
dent on the local electrical field and, in consequence, on the applied bias voltage –
predicts ideality factors that may exceed 2 [6]. This theory of tunneling-enhanced
recombination especially applies to Cu(In,Ga)Se2 with high Ga content or CuGaSe2
solar cells [7].

The preceding discussion made clear that the ideality factor is strongly influenced
by the recombination mechanism. However, the unique identification of recombi-
nation mechanisms via the ideality factor alone is not possible. Turning back to the
simulations, we notice that at higher voltages, the ideality factor of the dark J/V curve
in Figure 2.1c is again 1, as in Figure 2.1a, although the recombinationmechanism is
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recombination and thus, the recombination rate does not scale directly with the
np-product. Instead, the typical recombination mechanism in thin-film solar cells is
Shockley–Read–Hall recombination [2, 3] via defects in the band gap. Assuming a
defect in the middle of the band gap, the recombination rate scales with

R ¼ np"n2i
ðnþ pÞt ð2:3Þ

where t is the lifetime of electrons andholes, whichwe assume to be equal. Assuming
such a recombination rate and a p–n-junction solar cell, the dark J/Vcurve as shown in
Figure 2.1c differs considerably from the one for radiative recombination
(Figure 2.1a). In addition to the voltage range 0.5V<V< 0.7V, where the slope of
the curve is q/kT, the slope is considerably smaller at lower voltages V< 0.5V. This
difference comes from the various positions where the recombination takes place
dominantly at lower or higher voltages, respectively. At lower voltages, the recombi-
nation in the space-charge region is dominant. Within the space-charge region of a
p–n-junction (and similar within the intrinsic layer of a p–i–n-junction), the carrier
concentrations change from p>> n (toward the p-side) to n& p (toward the n-side).
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Figure 2.1 Semilogarithmic plots (a,c,e,g) of
dark J/V characteristics and linear plots (b, d, f,
h) of dark (dashed lines) and illuminated (full
lines) J/V characteristics as well as of the
difference Jph¼ Jil" Jd (open circles). In (a, b)
the characteristics of a p–n-junction diode
resulting from radiative recombination is shown
leading to an ideal slope of the dark J/V with an
ideality nid¼ 1 and a voltage-independent
photocurrent. (c, d) The departure from an ideal
diode law in case of typical p–n-junction solar
cells, where the low-energy part of the dark J/V

features a second slope with a higher ideality
factor nid¼ 1.86, which originates from SRH
recombination in the space-charge region. (e, f)
The addition of a series and parallel resistance
with the gray line representing the case with
Rs¼ 0 andRp¼1 for reference.Note that Jph is
voltage-dependent despite the fact that carriers
are efficiently collected. This can be used to
determine the series resistance. (g, h) A p–i–n-
junction with a low-mobility lifetime product
and a subsequently strongly voltage-dependent
photocurrent Jph.
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ideality factors as shown in Figure 2.1c. At lower voltages, the ideality factor is close
to but smaller than 2 (if multistep recombination or tunneling is absent), and
the recombination is dominated by the space-charge region. For higher voltages, the
ideality factor is close to 1 indicating defect recombination in the volume or the
surfaces of the absorber away from the space-charge region. For this reason,
determination of ideality factors in p–n-junction solar cells is usually done by fitting
two-diodemodels to experimental data. The two-diodemodel in the darkhas the form

J ¼ J01 exp
qV

nid1kT

! "
%1

# $
þ J02 exp

qV
nid2kT

! "
%1

# $
ð2:8Þ

where nid1 and nid2 are the two ideality factors and J01 and J02 the two corresponding
saturation current densities.

Up to now, we discussed the dependence of the recombination rate and the
recombination current on the internal voltage V, defined as the quasi-Fermi level
splitting in the space-charge region.We implicitly assumed that the voltagemeasured
is equal to this internal voltage. Now, we have to distinguish the externally measured
voltage Vext from the internal voltage Vi at the p–n-junction. The external voltage is
larger than the internal voltage by a termDV¼Vext%Vi that scales roughly in a linear
way with current density J. The proportionality factor between DV and J is the series
resistance Rs. The series resistance may originate from the finite conductivity of the
absorber layers themselves or from the front and back contacts. For V > 0.7 V in
Figure 2.1c, we already see that the simulated dark J/V curve (dashed line) has a
lower current density at a given voltage than the solid line indicating the two-diode
fit according to Eq. (2.8). For this simulation, this is due to the finite mobility and
thus finite conductivity of the p-type layer of the p–n-junction.

2.2 Current/Voltage Curves j39

Two diode model in the dark 

And in the light 

It is apparent that a solar cell can be modeled by an ideal current source JSC in parallel with 
two diodes – one with an ideality factor of 1 and the other with an ideality factor of  2. 
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and

Io1,n = qA
n2

i

NA

Dn

Ln

{
Dn/Ln sinh[(WP − xP )/Ln] + SBSF cosh[(WP − xP /Ln]
Dn/Ln cosh[(WP − xP )/Ln] + SBSF sinh[(WP − xP /Ln]

}
(3.129)

These are very general expressions for the dark saturation current and reduce to more
familiar forms when appropriate assumptions are made, as will be seen later.

Io2 is the dark saturation current due to recombination in the space-charge region,

Io2 = qA
WDni

τD
(3.130)

and is bias-dependent since the depletion width, WD, is a function of the applied voltage
(Equation 3.91).

3.3.5 Interpreting the Solar Cell I –V Characteristic

Equation (3.119), repeated here, is a general expression for the current produced by a solar cell.

I = ISC − Io1(eqV /kT − 1) − Io2(eqV /2kT − 1) (3.131)

The short-circuit current and dark saturation currents are given by rather complex expres-
sions (Equations 3.120, 3.127, 3.128, 3.129, and 3.130) that depend on the solar cell structure,
material properties, and the operating conditions. A full understanding of solar cell operation
requires detailed examination of these terms. However, much can be learned about solar cell oper-
ation by examining the basic form of Equation (3.131). From a circuit perspective, it is apparent
that a solar cell can be modeled by an ideal current source ISC in parallel with two diodes – one
with an ideality factor of 1 and the other with an ideality factor of 2, as shown in Figure 3.15.
Note that the direction of the current source is such that it serves to forward-bias the diodes.

The current–voltage (I –V ) characteristic of a typical silicon solar cell is plotted in
Figure 3.16 for the parameter values given in Table 3.2. Note that it is the minority-carrier
properties which determine the solar cell behavior, as indicated by Equations (3.119–3.129). For
simplicity, the dark current due to the depletion region (diode 2) has been ignored (a reasonable
and common assumption for a good solar cell, especially at larger forward biases). It illustrates
several important figures of merit for solar cells – the short-circuit current, the open-circuit voltage,

ISC
1 2 V

I

+

−

Figure 3.15 Simple solar cell circuit model. Diode 1 represents the recombination current in the
quasi-neutral regions (∝ eqV/kT ), while diode 2 represents recombination in the depletion region
(∝ eqV/2kT )

J = Jsc − J01(exp(
qV
nid1kT

)−1)+ J02 (exp(
qV

nid2kT
)−1) n1 ≅1.86 n2 = 2
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Figure 3.16 Current–voltage characteristic calculated for the silicon solar cell defined by Table 3.2
(area A = 100 cm2)

Table 3.2 Si solar cell model parameters

Parameter n-type Si emitter p-type Si base

Thickness WN = 0.35 µm WP = 300 µm
Doping density ND = 1 × 1020 cm−3 NA = 1 × 1015 cm−3

Surface recombination Dp = 1.5 cm−2/V s Dn = 35 cm−2/V s
Minority-carrier diffusivity SF,eff = 3 × 104 cm/s SBSF = 100 cm/s
Minority-carrier lifetime τp = 1 µs τn = 350 µs
Minority-carrier diffusion length Lp = 12 µm Ln = 1100 µm

and the fill factor. At small applied voltages, the diode current is negligible and the current is just
the short-circuit current, ISC, as can be seen when V is set to zero in Equation (3.131). When
the applied voltage is high enough so that the diode current (recombination current) becomes
significant, the solar cell current drops quickly.

Table 3.2 shows the huge asymmetry between the n-emitter and the p-base in a typical
solar cell. The emitter is ∼1000 times thinner, 10 000 times more heavily doped, and its diffusion
length is ∼100 times shorter than the corresponding quantities in the base.

At open-circuit (I = 0), all the light-generated current ISC is flowing through diode 1 (diode
ignored, as assumed above), so the open-circuit voltage can be written as

VOC = kT

q
ln

ISC + Io1

Io1
≈ kT

q
ln

ISC

Io1
, (3.132)

where ISC % Io1.
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Of particular interest is the point on the I –V curve where the power produced is at a
maximum. This is referred to as the maximum power point with V = VMP and I = IMP. As seen
in Figure 3.16, this point defines a rectangle whose area, given by PMP = VMPIMP, is the largest
rectangle for any point on the I –V curve. The maximum power point is found by solving

∂P

∂V

∣∣∣∣
V =VMP

= ∂(IV )

∂V

∣∣∣∣
V =VMP

=
[
I + V

∂I

∂V

]∣∣∣∣
V =VMP

= 0 (3.133)

for V = VMP. The current at the maximum power point, IMP, is then found by evaluating
Equation (3.131) at V = VMP.

The rectangle-defined by VOC and ISC provides a convenient reference for describing the
maximum power point. The fill factor, FF , is a measure of the squareness of the I –V characteristic
and is always less than one. It is the ratio of the areas of the two rectangles shown in Figure 3.16 or

FF = VMPIMP

VOCISC
= PMP

VOCISC
. (3.134)

Arguably, the most important figure of merit for a solar cell is its power conversion effi-
ciency, η, which is defined as

η = PMP

Pin
= FFV OCISC

Pin
(3.135)

The incident power Pin is determined by the properties of the light spectrum incident upon the
solar cell. Further information regarding experimental determination of these parameters appears in
Chapter 18.

Another important figure of merit is the collection efficiency, which can be defined relative
to both optical and recombination losses as an external collection efficiency

ηext
C = ISC

Iinc
(3.136)

where

Iinc = qA
∫

λ<λG

f (λ) dλ (3.137)

is the maximum possible photocurrent that would result if all photons with E >EG (λ < λG =
hc/EG) created electron–hole pairs that were collected. The collection efficiency can also be
defined with respect to recombination losses as the internal collection efficiency

ηint
C = ISC

Igen
(3.138)

where

Igen = qA(1 − s)

∫

λ<λG

[1 − r(λ)f (λ)(1 − e−α(WN+WP )) dλ (3.139)

is the light-generated current. This represents what the short-circuit current would be if every photon
that is absorbed is collected and contributes to the short-circuit current. Igen = Iinc when there is
no grid shadowing, no reflective losses, and the solar cell has infinite optical thickness.
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is the light-generated current. This represents what the short-circuit current would be if every photon
that is absorbed is collected and contributes to the short-circuit current. Igen = Iinc when there is
no grid shadowing, no reflective losses, and the solar cell has infinite optical thickness.

At open-circuit (J=0 ), all the light-generated current Jsc is flowing through diode 1 (diode 
ignored, as assumed above), so the open-circuit voltage can be written as 
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and

Io1,n = qA
n2

i

NA

Dn

Ln

{
Dn/Ln sinh[(WP − xP )/Ln] + SBSF cosh[(WP − xP /Ln]
Dn/Ln cosh[(WP − xP )/Ln] + SBSF sinh[(WP − xP /Ln]

}
(3.129)

These are very general expressions for the dark saturation current and reduce to more
familiar forms when appropriate assumptions are made, as will be seen later.

Io2 is the dark saturation current due to recombination in the space-charge region,

Io2 = qA
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and is bias-dependent since the depletion width, WD, is a function of the applied voltage
(Equation 3.91).

3.3.5 Interpreting the Solar Cell I –V Characteristic

Equation (3.119), repeated here, is a general expression for the current produced by a solar cell.

I = ISC − Io1(eqV /kT − 1) − Io2(eqV /2kT − 1) (3.131)

The short-circuit current and dark saturation currents are given by rather complex expres-
sions (Equations 3.120, 3.127, 3.128, 3.129, and 3.130) that depend on the solar cell structure,
material properties, and the operating conditions. A full understanding of solar cell operation
requires detailed examination of these terms. However, much can be learned about solar cell oper-
ation by examining the basic form of Equation (3.131). From a circuit perspective, it is apparent
that a solar cell can be modeled by an ideal current source ISC in parallel with two diodes – one
with an ideality factor of 1 and the other with an ideality factor of 2, as shown in Figure 3.15.
Note that the direction of the current source is such that it serves to forward-bias the diodes.

The current–voltage (I –V ) characteristic of a typical silicon solar cell is plotted in
Figure 3.16 for the parameter values given in Table 3.2. Note that it is the minority-carrier
properties which determine the solar cell behavior, as indicated by Equations (3.119–3.129). For
simplicity, the dark current due to the depletion region (diode 2) has been ignored (a reasonable
and common assumption for a good solar cell, especially at larger forward biases). It illustrates
several important figures of merit for solar cells – the short-circuit current, the open-circuit voltage,
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Figure 3.15 Simple solar cell circuit model. Diode 1 represents the recombination current in the
quasi-neutral regions (∝ eqV/kT ), while diode 2 represents recombination in the depletion region
(∝ eqV/2kT )
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Table 3.2 Si solar cell model parameters

Parameter n-type Si emitter p-type Si base

Thickness WN = 0.35 µm WP = 300 µm
Doping density ND = 1 × 1020 cm−3 NA = 1 × 1015 cm−3

Surface recombination Dp = 1.5 cm−2/V s Dn = 35 cm−2/V s
Minority-carrier diffusivity SF,eff = 3 × 104 cm/s SBSF = 100 cm/s
Minority-carrier lifetime τp = 1 µs τn = 350 µs
Minority-carrier diffusion length Lp = 12 µm Ln = 1100 µm

and the fill factor. At small applied voltages, the diode current is negligible and the current is just
the short-circuit current, ISC, as can be seen when V is set to zero in Equation (3.131). When
the applied voltage is high enough so that the diode current (recombination current) becomes
significant, the solar cell current drops quickly.

Table 3.2 shows the huge asymmetry between the n-emitter and the p-base in a typical
solar cell. The emitter is ∼1000 times thinner, 10 000 times more heavily doped, and its diffusion
length is ∼100 times shorter than the corresponding quantities in the base.

At open-circuit (I = 0), all the light-generated current ISC is flowing through diode 1 (diode
ignored, as assumed above), so the open-circuit voltage can be written as

VOC = kT

q
ln

ISC + Io1

Io1
≈ kT

q
ln

ISC

Io1
, (3.132)

where ISC % Io1.



the use of equivalent circuit models is difficult or impossible, depending on the
specific needs of the given application.

2.2.2
Measurement of Current/Voltage Curves

Details concerning the correct measurement of J/V curves of solar cells under
illumination have been discussed in Refs. [10, 11]. Thus, we restrict ourselves here
to a brief overview of the measurement itself. Illuminated J/V curves are usually
measured under standard testing conditions, that is, a sample temperature of 25 !C
and a predefined spectrum, which is for nonconcentrating solar cells usually the
AM1.5Gspectrum[12]. Figure2.3 showsa typical setup for exactmeasurementsof the
illuminated J/V curve. The biggest challenge for this measurement is to have a light
source generating a spectrum that resembles the solar spectrum asmuch as possible.
Since the terrestrial solar spectrumis close to that of ablackbodywith a temperatureof
about 5800K, any light bulb will have a black body spectrum with a much lower
temperaturesincenoelementcanwithstand these temperatureswithoutmelting.The
pure metal with the highest melting point is W (approximately 3700K), which is
therefore commonlyused in lightbulbs. Since anyblackbody sourcewill not reach the
temperatureof the sunand thus thespectrumof the sunwithoutmelting, aWhalogen
lamp is usually combined with a Xe-lamp to get a close match to the solar spectrum.

Assuming that the device under test is illuminatedwith a spectrum resembling the
standard AM1.5G spectrum, the device is contacted and the load resistance is varied
such that the voltage changes. The voltage and current are usually measured during
the voltage sweep with a four-point probe technique, that is, the current measure-
ment is connected in series with the load resistance, while the voltage measurement
requires two separate probes. The circuit containing the voltage measurement has a
high resistance and avoiding any resistive voltage drop affecting the measurement
result.

Figure 2.2 Equivalent circuit useful for the
description of p–n-junction solar cells
consisting of a current source representing the
short-circuit current, two diodes for the
recombination in the space-charge region and

one series and parallel resistance. Note that a
representation with an equivalent circuit is
difficult for p–i–n-type solar cells, since the
photocurrent there is inherently voltage
dependent.

2.2 Current/Voltage Curves j41

For Figure 2.1e and f, we explicitly included an external series resistance and a
finite shunt resistance to show its influence on the J/Vcurves under illumination and
in the dark. We add an external series resistance of Rs¼ 5V cm2 and an external
shunt resistance ofRp¼ 5 kV cm2. The series resistance leads to an increased voltage
at constant current density in case of the dark J/V curve, that is, more voltage has to
be applied for the same current to flow since part of the voltage drops over the
external resistance and not over the p–n-junction. Under illumination, the curve
with series resistance is shifted in the opposite direction. Now, the voltage at the
junction must be higher than the voltage at the external contacts to drive a current
through an external load resistance. Now, the photocurrent Jph defined as the
difference between dark and illuminated J/V curve is no longer constant, since the
voltage drop depends on the current, which is – at a given voltage – different under
illumination and in the dark.

The shunt resistance Rp has a large influence on the dark J/V curve in the lower
voltage range where the current increases drastically when compared to the char-
acteristics without Rp. In contrast at higher voltages, the differential conductivity
Gd ¼ qJ=qV of the diode itself increases exponentially, while the conductivity of the
shunt stays constant. Thus, for higher voltages, the shunt disappears and is also
nearly invisible in the linear plot of dark and illuminated J/V curve.

Including both shunt and series resistance in the J/V curve leads to

J ¼ J01 exp
qðV#JRsÞ
nid1kT

! "
#1

# $
þ J02 exp

qðV#JRsÞ
nid2kT

! "
#1

# $
þ V#JRs

Rp
#Jsc

ð2:9Þ

This equation is frequently used to analyze J/V measurements of p–n-junction
solar cells. A useful property of this description of the J/V curve is that it consists
entirely of basic circuit elements, like ideal diodes (defined by nid and J0), resistances
(Rs,Rp), and a current source ( Jsc) as depicted in Figure 2.2. Thus, such a description
is particularly useful for two-dimensional modeling of solar cells and modules by
solving networks of diodes, resistances, and current sources with appropriate
software tools like SPICE (cf. Chapter 20).

Especially fordisordered, low-mobility solar cells that are fabricatedasp–i–n-diodes
such as amorphous and microcrystalline thin-film solar cells, an expression like
Eq. (2.9) is still insufficient todescribe themeasured resultswell.As shown inChapter
19, the charge carrier collectionof p–i–n-typedevices is inherently voltage-dependent.
Thus, theshort-circuit currentdensity isnot a voltage-independent constant anymore.
Figure 2.1g and h shows the results of a simulation of a p–i–n-junction solar cell with
relatively lowmobility-lifetimeproductmt¼ 10#9 cm2V#1.Obviously, although there
are no external series resistances assumed, the photocurrent is strongly voltage
dependent and decays rapidly for increasing voltages, even changing its sign slightly
below 0.8V. The exact shape of the voltage-dependent photocurrent cannot be
reproduced with analytical equations but it must be calculated by numerical simula-
tions as presented inChapter 19.However, there are some analytical approximations,
as for example, that described inRefs. [8, 9]. Thus, for low-mobility p–i–n-type diodes,
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Figure 3.21, yields

I = I ′
SC − Io1(eq(V +IRS)/kT − 1) − Io2(eq(V +IRS)/2kT − 1) − (V + IRS)

RSh
(3.153)

where I ′
SC is the short-circuit current when there are no parasitic resistances. The effect of these

parasitic resistances on the I –V characteristic is shown in Figures 3.22 and 3.23. As can also be
seen in Equation (3.153), the shunt resistance RSh has no effect on the short-circuit current, but
reduces the open-circuit voltage. Conversely, the series resistance RS has no effect on the open-
circuit voltage, but reduces the short-circuit current. Sources of series resistance include the metal
contacts, particularly the front grid, and the transverse flow of current in the solar cell emitter to
the front grid.

I ′SC
RSh

RS +

−

V

I

1 2

Figure 3.21 Solar cell circuit model including the parasitic series and shunt resistances
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Figure 3.23 Effect of shunt resistance on the current–voltage characteristic of a solar cell (RS = 0)

It is often more convenient to rewrite Equation (1.153) as

I = I ′
SC − Io(eq(V +IRS)/AokT − 1) − (V + IRS)

RSh
(3.154)

where Ao is the diode ideality (quality) factor and typically has a value between 1 and 2, with
Ao ≈ 1 for diode dominated by recombination in the quasi-neutral regions and Ao → 2 when
recombination in the depletion region dominates. In solar cells where the recombination in each
region is comparable, Ao is somewhere in between. At short-circuit, Equation (3.154) becomes

ISC = I ′
SC − Io(e

qISCRS/AokT − 1) − ISCRS/RSh (3.155)

and at open-circuit, it becomes

0 = I ′
SC − Io(eVOC/AokT − 1) − VOC/RSh. (3.156)

When log(ISC) is plotted versus VOC (where ISC and VOC are obtained over a range of
illumination intensities), there is typically a regime where neither the series nor shunt resistances
are important, as illustrated in Figure 3.24. The slope of this line will yield the diode ideality factor
Ao, while the y-intercept will give Io. In the regime where only series resistance is important,
Equations (3.155) and (3.156) can be combined to give

ISCRS = AokT

q
ln

[
IoeqVOC/AokT − ISC

Io

]
(3.157)

and a plot of ISC versus log[IoeqVOC/AokT − ISC] will then permit RS to be extracted from the slope
of this line. Similarly, in the regime where only RSh is important, Equations (3.155) and (3.156)

Effect of  shunt resistance on the 
current–voltage characteristic of  a 
solar cell (RS = 0) 

Rs - The series resistance may 
originate from the finite conductivity 
of the absorber layers themselves or 
from the front and back contacts.  

 

Rp- shunt resitance (Rsh) 

We will want Rs=0 and RSh → ∞ 



Measurements of current voltage curves 
•  The biggest challenge for this measurement is to have a light source generating a 

spectrum that resembles the solar spectrum as much as possible. Since the 
terrestrial solar spectrum is close to that of a black body with a temperature of 
about 5800 K, any light bulb will have a black body spectrum with a much lower 
temperature since no element can withstand these temperatures without melting. 

•  The pure metal with the highest melting point is W (approximately 3700 K), 
which is therefore commonly used in light bulbs. Since any black body source 
will not reach the temperature of the sun and thus the spectrum of the sun without 
melting, a W halogen lamp is usually combined with a Xe-lamp to get a close 
match to the solar spectrum. 

•  Assuming that the device under test is illuminated with a spectrum resembling the 
standard AM1.5G spectrum, the device is contacted and the load resistance is 
varied such that the voltage changes. The voltage and current are usually measured 
during the voltage sweep with a four-point probe technique, that is, the current 
measurement is connected in series with the load resistance.  



2.2.3
Determination of Ideality Factors and Series Resistances

One part of the analysis of J/Vcurves is the determination of characteristic properties
of the curve, as for instance the series resistance and the diode quality factor at various
voltages. Onemethod is to fit a one- or two-diodemodel (Eq. (2.8)) to the experiment.
An alternative method for the determination of the series resistance in p–n-junction
solar cells with voltage-independent charge carrier collection is the comparison of
dark and illuminated J/V curves. As we have already seen in Figure 2.1f, the
difference between dark and illuminated current voltage curves is not a constant,
when the series resistance Rs> 0 even when the actual charge carrier collection
process is not voltage dependent. For a better understanding of this difference, let us
shift the current density Jil under illumination by, for example, theAM1.5G spectrum
by the short-circuit current density Jsc

AM1.5 at exactly this AM1.5G illumination to
obtain the current density Jil þ JAM1:5

sc . Then the J/V curve reads

Jil þ JAM1:5
sc ¼ J0exp

q
!
Vil#JilRs

"

nidkT
#1

# $
ð2:10Þ

if parallel resistances are neglected, and assuming that the solar-cell characteristic is
well described by a one-diodemodel in the relevant voltage range. The voltageVil at a
given current density is consequently

Vil ¼
nidkT
q

ln
Jil þ JAM1:5

sc

J0
þ 1

# $
þ JilRs ð2:11Þ

Figure 2.3 Schematic of a solar simulator for J/V measurements under illumination with a
spectrum resembling the standard AM1.5G. To better approximate the solar spectrum a W-lamp
and a Xe-lamp are combined.
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Characterization Standard 

•  Power density of 1000 W/m2 

•  Spectral power distribution corresponding  to 

 AM1.5 

The Air Mass is the path length which light takes through the atmosphere normalized to the shortest possible  
path length  

The Air Mass quantifies the reduction in the power of light as it passes through the atmosphere and is  
absorbed by air and dust. 



Quantum Efficiency Measurements  
(Incident photon to current efficiency)  

The data with open symbols stem from samples with a Cu-poor composition. The
extrapolated open-circuit voltage Voc(T¼ 0 K) roughly follow their band-gap energy
Eg (as determined independently from their stoichiometry). The dominant recom-
bination path for these devices, therefore, is bulk recombination. In contrast,
samples with absorbers that are grown under Cu-rich conditions have low activa-
tion energies that are independent from the absorber�s band-gap energy. This
finding points to the fact that theirVoc is limited by interface recombination and the
activation energy corresponds to the interfacial barrier Wb.

Obviously such an analysis of the dominant recombination mechanism requires
investigation of a large series of samples (as done in Ref. [17]) and Figure 2.6 just
illustrates exemplarily the experimental procedure. More examples covering differ-
ent types of solar cells (CuInSe2, CdTe, and a-Si:H) are found in Ref. [18].

2.3
Quantum Efficiency Measurements

2.3.1
Definition

A J/V measurement yields information on the absolute value of the short-circuit
current density Jsc produced in a solar cell. However, this simple measurement does
not yield information on the origin of the loss mechanisms that are responsible for
the fact that not every photon in the solar spectrum contributes to Jsc. In an ideal solar
cell, corresponding to the Shockley–Queisser limit as discussed in Chapter 1, every
photonwith a suitable energyE>Eg leads to one electron–hole pair that is collected at
the terminals of the solar cell. In real solar cells, this is not the case and we are
interested in knowing the reasons for these losses. An appropriatemethod to literally
shed light onto this problem is the spectrally resolved measurement of the short-
circuit current, that is, Jsc(E) likewise Jsc(l), depending on whether the result is
plotted versus photon energy E or versus wavelength l. The external quantum
efficiency Qe is defined as the number of electrons collected per photon incident on
the solar cell according to

QeðEÞ ¼
1
q
dJscðEÞ
dWðEÞ ð2:22Þ

where dW(E) is the incident photon flux in units of [W]¼ cm$2 s$1 in the (photon)
energy interval dE that leads to the short-circuit current density dJsc.

A second frequently used quantity is the spectral response SR defined as the
current produced per unit optical power incident on the solar cell. Consequently, the
spectral response has the unit [SR]¼A/W and relates to the quantum efficiency via

SR ¼ dJscðEÞ
dWðEÞ

1
E
¼ qQe

E
ð2:23Þ
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A J-V measurement yields information on the absolute value of the short-circuit current 
density Jsc produced in a solar cell.  
However, this simple measurement does not yield information on the origin of the loss 
mechanisms that are responsible for the fact that not every photon in the solar spectrum 
contributes to Jsc. 

The external quantum efficiency Qe is defined as the number of electrons 
collected per photon incident on the solar cell according to: 

where dW(E) is the incident photon Φin units of cm-2 s-1 in the (photon) energy 
interval dE that leads to the short-circuit current density dJsc. 

Figure 2.4: Schematic diagram for J-V measurement. The shaded region is internal

to the device.

grammable power supply (Keithley 230) is connected in series with an ammeter (HP 34401A).

The device is also connected in parallel with a voltmeter (HP 34401A). The current-voltage

experiment is computer-controlled with LabVIEW software. Typical J-V data is shown in

Figure 2.5.

2.2.2 Quantum Efficiency

Quantum-efficiency measurements (QE) quantify the spectral response of a device. The

photocurrent response to a monochromatic probe beam is measured, with QE defined as

QE(λ ) =
# o f electrons collected

# o f incident photons
. (2.7)

If QE is obtained under true JSC conditions (AM1.5 illumination, V = 0), then QE mea-

surements can be related to the photovoltaic parameter JSC by

JSC = q

∫

ΦAM1.5(λ )QE(λ )dλ , (2.8)

where ΦAM1.5 is the photon flux of AM1.5 illumination. It is usually impractical to perform

QE measurements under true JSC conditions, and fortunately Equation 2.8 generally holds
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For an opaque solar cell we know that all photons that are not reflected are 
absorbed in the device, that is, the absorptance A is given by A=1-R.  
The internal quantum efficiency Qi is then defined as the number of collected 
electrons per number of photon absorbed in the solar cell 

In the ideal Shockley–Queisser case, we would have Qe(E)¼ 1 for E"Eg and
Qe(E)¼ 0, otherwise. In real solar cells, we haveQe(E)< 1 (even for E"Eg) resulting
either from (i) optical or (ii) recombination losses. The optical losses can be further
broken down to losses due to reflection and due to parasitic absorption within the
device.

The reflection losses can be assessed by an additional measurement using a
spectrometer, equipped with an integrating sphere determining the reflectance R,
thus allowing us to quantify this loss mechanism separately. For an opaque solar cell
we know that all photons that are not reflected are absorbed in the device, that is, the
absorptance A is given by A¼ 1#R. The internal quantum efficiency Qi is then
defined as the number of collected electrons per number of photon absorbed in the
solar cell according to

QiðEÞ ¼
QeðEÞ
1#RðEÞ

ð2:24Þ

Note that sometimes Qi is defined as the number of collected electrons per
number of photons entering in the solar cell. This definition includes weakly
absorbed light that enters the solar cell and leaves it after reflection at internal
interfaces or surfaces. In this case, the overall reflectance Rmust be replaced by the
front reflectance Rf.

In internal quantum-efficiency spectra, the influence of (front surface) reflection is
eliminated. However, it still contains information on optical as well as electrical
properties of the device. For instance the effect of a surface texture on the path-length
enhancement of weakly absorbed light (cf. Chapters 1 and 5) influences both internal
and external quantum efficiency. In addition in a typical thin-film layer system, each
layer, except for the photovoltaically active one(s), will lead to parasitic absorption.
Therefore, the first step for the analysis ofQi requires an opticalmodel for the device
to determine the absorptanceAi of each layer i in the system.Obviously, such amodel
requires the knowledge of thicknesses, refractive indices, and absorption coefficients
determined, for example, with spectroscopic ellipsometry for reference layers from
the respective materials. For thin layers, reflection, absorption, and transmission
feature interference effects, which allow checking the accuracy of the simulation of
the absorptance by comparison of measured and calculated reflectance. In case the
absorptance Ai of a photovoltaically active layer is known, onemay define an internal
quantum efficiency Q i

& for this layer via [19–21]

Q&
i ðEÞ ¼

QeðEÞ
AiðEÞ

ð2:25Þ

In the photovoltaically active layer, absorption is exclusively due to generation of
electron–hole pairs (neglecting a possible contribution from free carrier absorption
which may occur at long wavelengths in doped absorber materials). Under above
assumption, the absorptance Ai(E) is given by integrating the generation function g
(x,E) over the thickness d of the layer. Losses within the active layer are then only due
to recombination and only starting from this point an electronic model must be
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Figure 2.4: Schematic diagram for J-V measurement. The shaded region is internal

to the device.

grammable power supply (Keithley 230) is connected in series with an ammeter (HP 34401A).

The device is also connected in parallel with a voltmeter (HP 34401A). The current-voltage

experiment is computer-controlled with LabVIEW software. Typical J-V data is shown in

Figure 2.5.

2.2.2 Quantum Efficiency

Quantum-efficiency measurements (QE) quantify the spectral response of a device. The

photocurrent response to a monochromatic probe beam is measured, with QE defined as

QE(λ ) =
# o f electrons collected

# o f incident photons
. (2.7)

If QE is obtained under true JSC conditions (AM1.5 illumination, V = 0), then QE mea-

surements can be related to the photovoltaic parameter JSC by

JSC = q

∫

ΦAM1.5(λ )QE(λ )dλ , (2.8)

where ΦAM1.5 is the photon flux of AM1.5 illumination. It is usually impractical to perform

QE measurements under true JSC conditions, and fortunately Equation 2.8 generally holds
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If QE is obtained under true JSC conditions (AM1.5 illumination, V = 0), then 
QE measurements can be related to the photovoltaic parameter JSC by 

In the ideal Shockley–Queisser case, we would have Qe(E)=1 for E≥Eg and 
Qe(E) = 0, otherwise.  
In real solar cells, we have Qe(E) < 1 (even for E ≥ Eg) resulting either from  

 (i) optical or (ii) recombination losses.  
The optical losses can be further broken down to losses due to reflection 
and due to parasitic absorption within the device. 



Measurement principle 
Monochromator based setup 

•  The advantage of using monochromators is the high wavelength resolution and the 
broad spectral range.  

Figure 2.6: Schematic diagram for QE measurement.

exceeds external QE, and is often close to unity over a significant spectral range.

A schematic diagram for the QE measurement is given in Figure 2.6. An ELC projec-

tor bulb operated at 24 V, 10 A DC is used as the white light source at the input slit of the

monochromator. The monochromator is a dual-grating 150-mm monochromator manufac-

tured by Acton (SpectraPro-150). The spectral width of the probe-beam at the output of the

monochromator is 4 nm. A mechanical chopper controlled by a Stanford Research chopper

controller (SR 540) modulates the probe beam at 151 Hz, the beam is then collimated and

focussed into a 1×2 mm spot on the test device. A Krypton flashlight bulb connected to a

DC power supply is used as the source of DC white light bias. The solar cell is connected

to a voltmeter for voltage monitoring. In parallel with the voltmeter, a current-to-voltage

preamplifier (Stanford Research: SR 570) converts the AC photocurrent into an oscillating

voltage.

The preamplifier allows for adjustment of the voltage bias, and also sinks away up to

5 mA of DC current due to white-light bias or forward voltage bias. This 5-mA limit for

the preamplifier places a limit on the amount of white-light bias that may be tolerated in

a measurement, as well as on the forward voltage. The oscillating voltage output of the

17

applied.Typically,sucham
odelcalculatesthecollectionprobabilityfc (x)forelectrons

andholessuch
thatattheveryendoftheanalysis,wem

ayuse

Q
!i ðEÞ¼

Q
e ðEÞ

A
i ðEÞ ¼

Ð d0 gðx;EÞfc ðxÞdx

Ð d0 gðx;EÞdx
ð2:26Þ

explainingtheexternalquantum
efficiencylayerbylayer.

2.3.2
MeasurementPrincipleandCalibration

Figure2.7showstwotypicalquantum
efficiencym

easurem
entsetups:(a)am

ono-
chrom

ator-basedsetupand(b)asetupwitha
filterwheelequippedwithinterference

Figure2.7
Schemeoftwoquantum

efficiency
setups–(a)amonochromator-basedsetupand
(b)asetupwithafilterwheel.Inbothcases,
choppedmonochromaticlightilluminatesfirst
thereference(duringcalibration)andthenthe
sample(duringmeasurement).Thecurrent
outputofreferenceorsampleisconvertedto

voltageandthenamplifiedwithalock-in
amplifiertriggeredbythechopperwheel
synchronizationoutput.Temporalvariationsin
intensityofthemonochromaticlightcanbe
monitoredwithamonitordiode
measuringintensityduringcalibrationand
measurement.

2.3
Quantum

EfficiencyM
easurementsj

49



•  In case of the setup with grating monochromator, first white light from a W-
halogen lamp or a Xe-arc lamp is chopped before entering the monochromator. 
The chopper is needed to obtain a periodic signal, which a lock-in 
amplifier can use. 

The monochromatic light is then focused on the  
 (i) solar cell to be measured (during the actual measurement) or  
 (ii) on the reference cell or detector (during the calibration).  

 
The reference used for calibration of the setup can either  

 (i) be a pyroelectric radiometer for the relative calibration combined with a 
solar cell or photodiode for the absolute calibration at one wavelength  

 (ii) one reference solar cell for the whole spectral range.  
The advantage of using a pyroelectric radiometer lies in its spectrally independent 
sensitivity over a broad wavelength range. Thus, the calibration has a high quality 
for all wavelengths, where the intensity of the lamp is sufficient for a high signal to 
noise ratio in the radiometer.  
In case of the reference solar cell, not only the intensity of the lamp but also the 
quantum efficiency of the reference cell must be sufficiently high. Using a reference 
cell (without a radiometer) is particularly useful as long as the reference cell has 
high quantum efficiency for all wavelengths of interest of the device under test.  



Current to voltage converter 
 
The current signal from the monitor and the test solar cell are then converted 
into a voltage by a current-to-voltage converter with a typical amplification 
ratio of 104–106 V/A. The voltage output of the converter serves as input for 
the lock-in amplifier that uses the synchronization output of the chopper 
controller as trigger input.  
 
The lock-in reference frequency comes directly from the chopper controller  
 
The amplified signal of the lock-in amplifier is then read and displayed by a 
computer. 



Subtle changes in porphyrine structure produce large effect on PV performance 




